Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(4): 710-720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491323

RESUMO

Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.


Assuntos
Poaceae , Tetraploidia , Poaceae/genética , Poliploidia , Genômica , Transcriptoma/genética , Genoma de Planta/genética , Evolução Molecular
2.
Int Immunopharmacol ; 131: 111850, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479157

RESUMO

Synovial angiogenesis is a key player in the development of rheumatoid arthritis (RA), and anti-angiogenic therapy is considered a promising approach for treating RA. CPD-002 has demonstrated efficacy in suppressing tumor angiogenesis as a VEGFR2 inhibitor, but its specific impacts on RA synovial angiogenesis and possible anti-RA effects need further study. We examined the influences of CPD-002 on the migration and invasion of human umbilical vein endothelial cells (HUVECs) and its impacts on HUVECs' tube formation and vessel sprouting ex vivo. The therapeutic potential of CPD-002 in adjuvant-induced arthritis (AIA) rats and its suppression of synovial angiogenesis were examined. The involvement of the VEGFR2/PI3K/AKT pathway was assessed both in HUVECs and AIA rat synovium. Here, CPD-002 inhibited the migration and invasion of VEGF-stimulated HUVECs, decreased their chemotactic response to RA fibroblast-like synoviocyte-released chemoattractants, and exhibited anti-angiogenic effects in vitro and ex vivo. CPD-002's targeting of VEGFR2 was confirmed with molecular docking and cellular thermal shift assays, supported by the abolishment of CPD-002's effects upon using VEGFR2 siRNA. CPD-002 relieved paw swelling, arthritis index, joint damage, and synovial angiogenesis, indicating its anti-arthritic and anti-angiogenic effects in AIA rats. Moreover, the anti-inflammatory effects in vivo and in vitro of CPD-002 contributed to its anti-angiogenic effects. Mechanistically, CPD-002 hindered the activation of VEGFR2/PI3K/AKT pathway in VEGF-induced HUVECs and AIA rat synovium, as evidenced by reduced p-VEGFR2, p-PI3K, and p-AKT protein levels alongside elevated PTEN protein levels. Totally, CPD-002 showed anti-rheumatoid effects via attenuating angiogenesis through the inhibition of the VEGFR2/PI3K/AKT pathway.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Simulação de Acoplamento Molecular , Movimento Celular , Transdução de Sinais , Artrite Reumatoide/metabolismo , Células Endoteliais da Veia Umbilical Humana , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proliferação de Células
3.
Phytomedicine ; 128: 155512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460357

RESUMO

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Artrite Experimental , Artrite Reumatoide , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Naftoquinonas , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Artrite Experimental/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley
5.
J Cancer ; 15(4): 1041-1052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230224

RESUMO

Background: Dopamine receptors have been reported to be involved in pain, while the exact effects and mechanism in bone cancer pain have not been fully explored. Methods: Bone cancer pain model was created by implanting walker 256 mammary gland carcinoma into right tibia bone cavity. Primary cultured spinal neurons were used for in vitro evaluation. FLIPR, western-blot, immunofluorescence, and Co-IP were used to detect cell signaling pathway. Results: Our results indicated that spinal dopamine D1 receptor (D1DR) and spinal dopamine D2 receptor (D2DR) could form heteromers in TCI rats, and antagonizing spinal D1DR and D2DR reduced heteromers formation and alleviated TCI-induced bone cancer pain. Further results indicated that D1DR or D2DR antagonist induced antinociception in TCI rats could be reversed by D1DR, D2DR, and D1/D2DR heteromer agonists. And Gq, IP3, and PLC inhibitors also attenuated TCI-induced bone cancer pain. In vitro results indicated that D1DR or D2DR antagonist decreased the Ca2+ oscillations upregulated by D1DR, D2DR, and D1/D2DR heteromer agonists in activated primary cultured spinal neurons. Moreover, inhibition of D1/D2DR heteromers induced antinociception in TCI rats was partially mediated by the CaMKII and MAPKs pathway. In addition, a natural compound levo-Corydalmine (l-CDL), could inhibit D1/D2DR heteromers and attenuate bone cancer pain. Results: Inhibition of spinal D1/D2DR heteromers via l-CDL decreases excitability in spinal neurons, which might present new therapeutic strategy for bone cancer pain.

6.
Plant Divers ; 45(2): 125-132, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37069926

RESUMO

The Hickeliinae (Poaceae: Bambusoideae) is an ecologically and economically significant subtribe of tropical bamboos restricted to Madagascar, Comoros, Reunion Island, and a small part of continental Africa (Tanzania). Because these bamboos rarely flower, field identification is challenging, and inferring the evolutionary history of Hickeliinae from herbarium specimens is even more so. Molecular phylogenetic work is critical to understanding this group of bamboos. Here, comparative analysis of 22 newly sequenced plastid genomes showed that members of all genera of Hickeliinae share evolutionarily conserved plastome structures. We also determined that Hickeliinae plastome sequences are informative for phylogenetic reconstructions. Phylogenetic analysis showed that all genera of Hickeliinae are monophyletic, except for Nastus, which is paraphyletic and forms two distant clades. The type species of Nastus (Clade II) is endemic to Reunion Island and is not closely related to other sampled species of Nastus endemic to Madagascar (Clade VI). Clade VI (Malagasy Nastus) is sister to the Sokinochloa + Hitchcockella clade (Clade V), and both clades have a clumping habit with short-necked pachymorph rhizomes. The monotypic Decaryochloa is remarkable in having the longest floret in Bambuseae and forms a distinct Clade IV. Clade III, which has the highest generic diversity, consists of Cathariostachys, Perrierbambus, Sirochloa, and Valiha, which are also morphologically diverse. This work provides significant resources for further genetic and phylogenomic studies of Hickeliinae, an understudied subtribe of bamboo.

7.
Plant Divers ; 45(2): 133-146, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37069933

RESUMO

Three woody bamboo species collected in Hainan, China in 1940 have been described as Dinochloa based on vegetative specimens. However, the identity of these species has long been in doubt, largely because the vegetative phase in species of Dinochloa is morphologically similar to that in species of Melocalamus, a climbing or scrambling bamboo genus of the paleotropical woody bamboos (Poaceae: Bambusoideae) that consists of about 15 species and one variety. To determine the phylogenetic affinity of the three Dinochloa species from Hainan, we sampled almost all recognized Chinese species of Melocalamus and representative species of Dinochloa as well as other closely related genera, performed molecular phylogenetic analysis, and compared their morphology based on herbarium and fieldwork investigation. Our ddRAD data indicate that the three species from Hainan are closely related to Melocalamus, not Dinochloa. Morphological analysis showed that these three species have a climbing habit but do not grow spirally, their culm leaves have smooth bases, and there is a ring of powder and/or tomenta above and below the nodes. Taken together our findings indicate that the three species from Hainan originally published in Dinochloa should be transferred to Melocalamus, i.e., Melocalamus orenudus (McClure) D.Z. Li & J.X. Liu, Melocalamus puberulus (McClure) D.Z. Li & J.X. Liu, and Melocalamus utilis (McClure) D.Z. Li & J.X. Liu, respectively. This study concludes with an enumeration of Chinese species of Melocalamus, with a key to nine recognized species and one variety, and a lectotypification for M. compatiflorus.

8.
Clin Exp Pharmacol Physiol ; 50(2): 158-168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36309970

RESUMO

Diabetic coronary artery injury is closely associated with Ca2+ dysregulation, although the underlying mechanism remains unclear. This study explored the role and mechanism of Ca2+ handling in coronary artery dysfunction in type 2 diabetic rats. Zucker diabetic fatty (ZDF) rats were used as the type 2 diabetes mellitus model. The contractility of coronary artery rings induced by KCl, CaCl2 , 5-HT and U46619 was significantly lower in ZDF rats than in Zucker lean rats. Vasoconstriction induced by 5-HT and U46619 was greatly inhibited by nifedipine. However, in the presence of 1 µM nifedipine or in the Ca2+ -free KH solution containing 1 µM nifedipine, there was no difference in the vasoconstriction between Zucker lean and ZDF rats. Store-operated calcium channels (SOCs) were not involved in coronary vasoconstriction. The downregulation of contractile proteins and the upregulation of synthesized proteins were in coronary artery smooth muscle cells (CASMCs) from ZDF rats. Metformin reversed the reduction of vasoconstriction in ZDF rats. Taken together, L-type calcium channel is important for regulating the excitation-contraction coupling of VSMCs in coronary arteries, and dysregulation of this channel contributes to the decreased contractility of coronary arteries in T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Vasos Coronários/metabolismo , Cálcio/metabolismo , Ratos Zucker , Diabetes Mellitus Tipo 2/metabolismo , Nifedipino , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Diabetes Mellitus Experimental/metabolismo , Serotonina/metabolismo , Canais de Cálcio Tipo L/metabolismo
9.
Eur J Pharmacol ; 937: 175386, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372274

RESUMO

Calcium (Ca2+) dysregulation contributes to various vascular diseases, but the role and underlying mechanism of stromal interaction molecule-1 (STIM1) in Ca2+ signaling and vasocontraction remain elusive. By using smooth muscle-specific STIM1 knockout (sm-STIM1 KO) mice and a multi myograph system, we investigated the differential role of STIM1 in Ca2+ handling between coronary and intrarenal arterial smooth muscles. After STIM1 deletion, contractile responses to 5-HT were obviously reduced in coronary and intrarenal arteries in the sm-STIM1 KO mice, but not altered in U46619. Phenylephrine barely induced the contraction of coronary arteries, we only detected an effect on the contraction of intrarenal arteries, which was also reduced in the sm-STIM1 KO mice. Then, L-type Ca2+ channel (Cav1.2)- mediated vasocontractions were significantly enhanced in coronary and intrarenal arteries in sm-STIM1 KO mice, similar to treatment with the Cav1.2 agonist Bay K8644 in coronary arteries. However, non-Cav1.2-mediated vasocontractions were remarkably reduced. IP3 receptor- and ryanodine receptor-mediated vasocontractions were both obviously decreased in coronary and intrarenal arteries in sm-STIM1 KO mice. Moreover, STIM1-mediated store operated Ca2+ entry (SOCE) only participated in the contraction of intrarenal arteries. In conclusion, we demonstrate that STIM1 participates in Cav1.2, sarcoplasmic reticulum (SR) Ca2+ release and store-operated Ca2+ (SOC) channels-mediated vasocontraction, which exhibits obvious organ-specificity between coronary and intrarenal arteries.


Assuntos
Sinalização do Cálcio , Cálcio , Camundongos , Animais , Cálcio/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Sinalização do Cálcio/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Músculo Liso Vascular , Artérias , Camundongos Knockout
10.
Aging Cell ; 21(12): e13734, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36278684

RESUMO

Diabetes mellitus (DM) is a common chronic metabolic disease caused by significant accumulation of advanced glycation end products (AGEs). Atrial fibrillation (AF) is a common cardiovascular complication of DM. Here, we aim to clarify the role and mechanism of atrial myocyte senescence in the susceptibility of AF in diabetes. Rapid transesophageal atrial pacing was used to monitor the susceptibility of mice to AF. Whole-cell patch-clamp was employed to record the action potential (AP) and ion channels in single HL-1 cell and mouse atrial myocytes. More importantly, anti-RAGE antibody and RAGE-siRNA AAV9 were used to investigate the relationship among diabetes, aging, and AF. The results showed that elevated levels of p16 and retinoblastoma (Rb) protein in the atrium were associated with increased susceptibility to AF in diabetic mice. Mechanistically, AGEs increased p16/Rb protein expression and the number of SA-ß-gal-positive cells, prolonged the action potential duration (APD), reduced protein levels of Cav1.2, Kv1.5, and current density of ICa,L , IKur in HL-1 cells. Anti-RAGE antibody or RAGE-siRNA AAV9 reversed these effects in vitro and in vivo, respectively. Furthermore, downregulating p16 or Rb by siRNA prevented AGEs-mediated reduction of Cav1.2 and Kv1.5 proteins expression. In conclusion, AGEs accelerated atrial electrical remodeling and cellular senescence, contributing to increased AF susceptibility by activating the p16/Rb pathway. Inhibition of RAGE or the p16/Rb pathway may be a potential therapeutic target for AF in diabetes.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Diabetes Mellitus Experimental , Camundongos , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação/fisiologia , Produtos Finais de Glicação Avançada/metabolismo
11.
Skin Res Technol ; 28(6): 780-785, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35969183

RESUMO

BACKGROUND: Vulvar lichen sclerosus (VLS) is a chronic inflammatory disease initially involving anogenital areas. Noninvasive assessment is essential for precise management in VLS. We aim to analyze high-frequency ultrasound (HFUS) features and correlate HFUS with histopathological changes. MATERIALS AND METHODS: Forty patients with histopathologically confirmed VLS lesions were retrospectively identified from August 2020 to September 2021. The clinical manifestations, dermoscopic images as well as both 20 and 50 MHz HFUS images were assessed. HFUS assessment included epidermal morphology, hypoechoic dermal band thickness, and hypoechoic dermal band internal echo. We compared HFUS images with histopathology, and Pearson's correlation coefficient was used to assess the relationship between hypoechoic dermal band thickness and histopathological depth. RESULTS: Hypoechoic dermal band was present in 100% (40/40) VLS lesions. There was a significant linear positive correlation between the histopathological depth and corresponding hypoechoic dermal band thickness, with a Pearson correlation coefficient of 0.685 (p < 0.001). Besides, 95% (38/40) lesions revealed smooth epidermis, and the internal echo of hypoechoic dermal band was assessed as homogeneous in 60% (24/40) and inhomogeneous in 40% (16/40) lesions. CONCLUSION: HFUS characteristics, as well as measurable hypoechoic dermal band thickness, may provide valuable information in the precise diagnosis and the treatment monitoring of VLS.


Assuntos
Líquen Escleroso e Atrófico , Líquen Escleroso Vulvar , Humanos , Feminino , Líquen Escleroso Vulvar/diagnóstico por imagem , Estudos Retrospectivos , Ultrassonografia/métodos , Epiderme/diagnóstico por imagem , Epiderme/patologia , Líquen Escleroso e Atrófico/diagnóstico por imagem , Líquen Escleroso e Atrófico/patologia
12.
Am J Chin Med ; 50(7): 1945-1962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35997647

RESUMO

Umbelliferone (UMB), a natural coumarin compound, has been reported to possess anti-rheumatic effects on rheumatoid arthritis (RA) experimental models, but its potential role of UMB in regulating migration, invasion and inflammation of RA fibroblast-like synoviocytes (FLS) remain unclear. Herein, MTT assay was performed to confirm the non-cytotoxic concentrations (10, 20, and 40[Formula: see text][Formula: see text]M) and the treatment time (24[Formula: see text]h) of UMB on TNF-[Formula: see text]-stimulated RA FLS (MH7A cells) in vitro. Results of wound-healing, transwell and phalloidin staining assays revealed that UMB inhibited TNF-[Formula: see text]-induced migration, invasion and F-actin cytoskeletal reorganization in MH7A. Results of ELISA, western blot and gelatin zymography indicated that UMB decreased the productions of pro-inflammatory factors, including IL-1[Formula: see text], IL-6, IL-8, MMP-2 and MMP-9, and inhibited MMP-2 activity in TNF-[Formula: see text]-stimulated MH7A cells. In vivo, UMB (25[Formula: see text]mg/kg and 50[Formula: see text]mg/kg) relieved the joint damage and synovial inflammation in rats with adjuvant-induced arthritis (AIA). Mechanistically, UMB could suppress Wnt/[Formula: see text]-catenin signaling both in TNF-[Formula: see text]-induced MH7A cells and in AIA rat synovium, evidenced by decreasing Wnt1 protein level, activating GSK-3[Formula: see text] kinase by blocking GSK-3[Formula: see text] (Ser9) phosphorylation, and reducing the protein level and nuclear translocation of [Formula: see text]-catenin. Importantly, combined use of lithium chloride (a Wnt/[Formula: see text]-catenin signaling agonist) eliminated the inhibitory effects of UMB on migration, invasion and inflammation in vitro and the anti-arthritic effects of UMB in vivo. We concluded that UMB inhibited TNF-[Formula: see text]-induced migration, invasion and inflammation of RA FLS and attenuated the severity of rat AIA through its ability to block Wnt/[Formula: see text]-catenin signaling pathway.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Ratos , Animais , Sinoviócitos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Via de Sinalização Wnt , Quinase 3 da Glicogênio Sintase/metabolismo , Movimento Celular , Células Cultivadas , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Membrana Sinovial/metabolismo , Fibroblastos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Umbeliferonas/farmacologia , Umbeliferonas/uso terapêutico , Cateninas/metabolismo , Cateninas/farmacologia , Proliferação de Células
13.
Aging Cell ; 21(1): e13529, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902213

RESUMO

Circular RNAs (circRNAs) have been established to be involved in numerous processes in the human genome, but their function in vascular aging remains largely unknown. In this study, we aimed to characterize and analyze the function of a circular intronic RNA, ciPVT1, in endothelial cell senescence. We observed significant downregulation of ciPVT1 in senescent endothelial cells. In proliferating endothelial cells, ciPVT1 knockdown induced a premature senescence-like phenotype, inhibited proliferation, and led to an impairment in angiogenesis. An in vivo angiogenic plug assay revealed that ciPVT1 silencing significantly inhibited endothelial tube formation and decreased hemoglobin content. Conversely, overexpression of ciPVT1 in old endothelial cells delayed senescence, promoted proliferation, and increased angiogenic activity. Mechanistic studies revealed that ciPVT1 can sponge miR-24-3p to upregulate the expression of CDK4, resulting in enhanced Rb phosphorylation. Moreover, enforced expression of ciPVT1 reversed the senescence induction effect of miR-24-3p in endothelial cells. In summary, the present study reveals a pivotal role for ciPVT1 in regulating endothelial cell senescence and may have important implications in the search of strategies to counteract the development of age-associated vascular pathologies.


Assuntos
Senescência Celular/genética , Quinase 4 Dependente de Ciclina/genética , Células Endoteliais/metabolismo , MicroRNAs/genética , RNA Circular/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transfecção
14.
Int Immunopharmacol ; 103: 108467, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34933161

RESUMO

Growing evidence indicates that synovial hypoxia-inducible factor 1α (HIF-1α) can be as a promising target for RA therapy. We previously reported that AMSP-30 m as a novel HIF-1α inhibitor had potent activities of anticancer metastasis. This study clarified the therapeutic effects of HIF-1α inhibitor AMSP-30 m on adjuvant-induced arthritis (AIA) in rats and explored the possible mechanisms. AMSP-30 m was given intraperitoneally to AIA rats, and its therapeutic effects and anti-inflammatory activity were evaluated. The influences of AMSP-30 m on synovial apoptosis, angiogenesis and sonic hedgehog (Shh) pathway were examined. We found that, accompanied with the inhibition of synovial HIF-1α expression, AMSP-30 m had potent anti-arthritic and anti-inflammatory effects on AIA rats, evidenced by the reduction in paw swelling, arthritis index, histopathological scores, and the production of IL-1ß, IL-6, TNF-α in serum and synovial tissues. AMSP-30 m reduced synovial Ki67 expression and increased TUNEL-positive index, indicating its anti-proliferative and pro-apoptotic effects on AIA synovial cells, which was related to reducing Bcl-2 protein level and increasing Bax, cleaved caspase 3 protein levels. Additionally, AMSP-30 m showed anti-angiogenic effects within AIA synovium, indicated by the reduction of synovial VEGF expression and blood vessels number (especially CD31+/αSMA- immature vessels, but not CD31+/αSMA+ mature vessels). Moreover, AMSP-30 m inhibited the activation of synovial Shh pathway, suggested by the reduction of pathway-related proteins, like Shh, Smo, Gli-1, cyclin D1 and c-Myc. Collectively, HIF-1α inhibitor AMSP-30 m exerted potent anti-arthritic effects on AIA rats possibly by promoting synovial apoptosis, reducing synovial angiogenesis and inhibiting Shh pathway.


Assuntos
Artrite Experimental , Proteínas Hedgehog , Subunidade alfa do Fator 1 Induzível por Hipóxia , Sinoviócitos , Animais , Apoptose/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Proteínas Hedgehog/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Ratos , Membrana Sinovial/patologia , Sinoviócitos/metabolismo
15.
Phytomedicine ; 94: 153841, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752968

RESUMO

BACKGROUND: 7-Hydroxycoumarin (7-HC) as a coumarin compound is widely found in Chinese herbs and exhibits diverse biological activities. Promoting cell apoptosis of fibroblast-like synoviocytes (FLS) is a meaningful strategy for rheumatoid arthritis (RA). Though the protective effect of 7-HC on RA experimental models has been reported, the specific mechanisms, especially the possible relationships of this effect to regulating FLS proliferation and apoptosis, still need clarification. PURPOSE: This study clarified the therapeutic effects of 7-HC on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms. METHODS: In vivo, 7-HC (15, 30 or 60 mg/kg) was intraperitoneally given to CIA rats, and its therapeutic effect and anti-inflammatory activity were evaluated. Ki67 immunohistochemistry, TUNEL assay and synovial proteins detection were conducted. In vitro, after treating with 7-HC (20, 40 or 80 µM) in TNF-α-stimulated RA FLS (MH7A cell line), cell proliferation and apoptosis were examined. The involvement of Wnt/ß-catenin pathway was checked in vivo and in vitro. RESULTS: 7-HC attenuated the severity of rat CIA, evidenced by the reduction of paw swelling, arthritis index, joint damage, collagen type II antibody serum level, and IL-1ß, IL-6, TNF-α production in serum and synovium. Particularly, 7-HC in vivo had anti-proliferative and pro-apoptotic effects on CIA rat synovial cells, indicated by reduced synovial Ki67 expression, raised synovial apoptosis index, decreased Bcl-2 protein level and increased level of Bax and cleaved caspase 3 protein. Further, 7-HC in vitro suppressed proliferation and promoted apoptosis of TNF-α-stimulated MH7A cells by regulating the mitochondrial pathway. Mechanistically, 7-HC treatment inhibited Wnt/ß-catenin pathway, suggested by the reduction of pathway-related proteins (e.g. Wnt1, LRP6, p-GSK-3ß (Ser9), ß-catenin, cyclin D1 and c-Myc), the recovery of GSK-3ß activity and the inhibition of ß-catenin nuclear translocation. As expected, combined use of lithium chloride, an activator of Wnt/ß-catenin signaling, reversed the anti-proliferative and pro-apoptotic effects of 7-HC in vitro. CONCLUSION: 7-HC relieved the severity of rat CIA by inhibiting cell proliferation and inducing apoptosis of rheumatoid FLS via inhibition of Wnt/ß-catenin pathway.


Assuntos
Artrite Experimental , Sinoviócitos , Animais , Apoptose , Artrite Experimental/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fibroblastos , Glicogênio Sintase Quinase 3 beta , Ratos , Membrana Sinovial , Umbeliferonas/farmacologia , Via de Sinalização Wnt
16.
Mol Ther Nucleic Acids ; 26: 374-387, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34552819

RESUMO

Endothelial cell senescence is one of the most important causes of vascular dysfunction and atherosclerosis. Circular RNAs (circRNAs) are endogenous RNA molecules with covalently closed-loop structures, which have been reported to be abnormally expressed in many human diseases. However, the potential role of circRNAs in endothelial cell senescence and atherosclerosis remains largely unknown. Here, we compared the expression patterns of circRNAs in young and senescent human endothelial cells with RNA sequencing. Among the differentially expressed circRNAs, circGNAQ, a circRNA enriched in vascular endothelium, was significantly downregulated in senescent endothelial cells. circGNAQ silencing triggered endothelial cell senescence, as determined by a rise in senescence-associated ß-galactosidase activity, reduced cell proliferation, and suppressed angiogenesis; circGNAQ overexpression showed the opposite effects. Mechanistic studies revealed that circGNAQ acted as an endogenous miR-146a-5p sponge to increase the expression of its target gene PLK2 by decoying the miR-146a-5p, thereby delaying endothelial cell senescence. In vivo studies showed that circGNAQ overexpression in the endothelium inhibited endothelial cell senescence and atherosclerosis progression. These results suggest that circGNAQ plays critical roles in endothelial cell senescence and consequently the pathogenesis of atherosclerosis, implying that the management of circGNAQ provides a potential therapeutic approach for limiting the progression of atherosclerosis.

17.
Inflammation ; 44(6): 2232-2245, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34101073

RESUMO

We previously reported that penta-acetyl geniposide ((Ac)5GP, an active derivative of geniposide) showed anti-arthritic effect on adjuvant-induced arthritis (AIA) rats by promoting the apoptosis of AIA fibroblast-like synoviocyte (FLS). This study aimed to demonstrate the effects of (Ac)5GP on migration, invasion, and inflammation of TNF-α-stimulated rheumatoid arthritis (RA) FLS (MH7A cell) and to explore the involved mechanisms. MTT assay was used to determine the applied non-cytotoxic doses of (Ac)5GP (12.5, 25, 50 µM) in vitro. Results of wound-healing, transwell, and phalloidin staining assays indicated that (Ac)5GP reduced the migration, invasion, and F-actin cytoskeletal reorganization of TNF-α-stimulated MH7A. Results of ELISA and western blot assays confirmed that (Ac)5GP reduced TNF-α-induced production of pro-inflammatory cytokines (like IL-1ß, IL-6, IL-8) and matrix metalloproteinases (MMPs, such as MMP-2 and MMP-9). Moreover, (Ac)5GP inhibited TNF-α-induced activation of Wnt/ß-catenin pathway, evidenced by reducing the protein levels of Wnt1, p-GSK-3ß (Ser9), and ß-catenin and preventing ß-catenin nuclear translocation. Importantly, the combination of XAV939 (an inhibitor of Wnt/ß-catenin) promoted the actions of (Ac)5GP on TNF-α-induced migration, invasion, and inflammation, further revealing the involvement of Wnt/ß-catenin pathway underlying the therapeutic effects of (Ac)5GP on TNF-α-stimulated MH7A. In vivo, (Ac)5GP relieved the progression and severity of rat collagen-induced arthritis, related to reducing the levels of IL-1ß, IL-6, IL-8, MMP-2, and MMP-9 as well as inhibiting Wnt/ß-catenin pathway in synovial tissues. Collectively, (Ac)5GP could suppress TNF-α-induced migration, invasion, and inflammation in RA FLS involving Wnt/ß-catenin pathway and (Ac)5GP might be as a candidate agent for RA treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Antirreumáticos/farmacologia , Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Movimento Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Sinoviócitos/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Linhagem Celular , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Ratos Sprague-Dawley , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa/toxicidade
18.
J Inflamm Res ; 14: 1945-1957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017191

RESUMO

INTRODUCTION: Previous studies have confirmed the pathologic role of synovial aquaporin 1 (AQP1) in rheumatoid arthritis (RA), but its associations with the abnormal biologic behaviors of fibroblast-like synoviocytes (FLS) remain unclear. Herein, we examined the roles of AQP1 in the proliferation, migration and invasion of TNF-α-stimulated RA FLS (MH7A cells) and explored the underlying mechanisms. MATERIALS AND METHODS: Lentivirus-mediated AQP1 overexpression or silencing MH7A cells was constructed. Assays of MTT, flow cytometry (PI staining and Annexin V-PE/7-AAD staining), TMRM staining, wound-healing, transwell and phalloidin staining were performed to detect cell proliferation, cycle distribution, apoptosis, migration and invasion. The involvement of Wnt/ß-catenin pathway was revealed by Western blot and ß-catenin immunofluorescence staining. RESULTS: AQP1 overexpression promoted cell proliferation of TNF-α-stimulated MH7A by facilitating transformation from G0/G1 to S phase and inhibiting cell apoptosis (ie, reduced apoptosis rates, raised mitochondrial membrane potential, increased Bcl-2 protein level and decreased levels of Bax and cleaved caspase 3 protein). Also, AQP1 overexpression increased the migration index as well as the numbers of migrated and invasive cells. Furthermore, AQP1 overexpression promoted the activation of Wnt/ß-catenin pathway, and XAV939, an inhibitor of Wnt/ß-catenin, canceled the above effects of AQP1 overexpression on MH7A cells. As expected, AQP1 silencing exhibited the opposite effects on TNF-α-stimulated MH7A cells, which could be reversed by LiCl, an activator of Wnt/ß-catenin. CONCLUSION: AQP1 can affect the proliferation, migration and invasion of MH7A cells by Wnt/ß-catenin signaling pathway, and AQP1 can be as a crucial determiner that can regulate RA FLS biologic behaviors.

19.
Clin Exp Pharmacol Physiol ; 48(7): 996-1006, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33792963

RESUMO

BACKGROUND: Thromboxane A2 (TXA2 ) participates in many pathophysiological processes of coronary artery disease. However, its mechanism of TXA2 -induced contraction in the coronary artery remains to be clarified. A multi myograph system was used to measure the isometric tension of the mouse coronary arteries and identify the effect and pathway of TXA2 analogues U46619. Confocal laser scanning microscopy was used to measure the intracellular calcium concentration ([Ca2+ ]i ) in mouse coronary artery smooth muscle cells. Results from the experiment had shown that contraction in coronary artery was generated by U46619 in a concentration-dependent manner, which was completely abolished by a specific TXA2 receptor blocker, GR32191. PI-PLC inhibitors U73122 and D609 and Rho-Kinase inhibitor Y-27632 can block the U46619 elicited coronary artery contraction in a dose-dependent manner. Then, the vasoconstriction response to U46619 was obviously inhibited by two pan-PKC inhibitors chelerythrine or GÓ§6983, and a selective PKCδ inhibitor rottlerin, but was not blocked by a selective PKCζ inhibitor PKC-PS or a selective PKCß inhibitor hispidin. Meanwhile, the PKC activator PDBu-induced vasoconstriction was significantly inhibited by 1 µmol/L nifedipine, then mostly inhibited by 100 µmol/L 2-APB and 10 µmol/L Y27632. We further found that the response to U46619 was inhibited, respectively, by three calcium channel blockers nifedipine, SKF96356 or 2-APB in a concentration-dependent manner. Although Store-operated Ca2+ (SOC) channels generated the increase of [Ca2+ ]i in mouse coronary artery smooth muscle cells, SOC channels did not contribute to the vasoconstriction in mouse coronary arteries. Caffeine-induced sarcoplasmic reticulum (SR) Ca2+ release could obviously induce coronal vasoconstriction. In addition, NPPB, a cell membrane Ca2+ activated C1- channel blocker, could obviously inhibit the U46619-induced vasoconstriction. The U46619-induced mouse coronary artery contraction was involved in the increase in [Ca2+ ]i mediated by Cav1.2, TRPC channels and SR release through the activation of G-protein-coupled TP receptors and the kinases signalling pathway in TP downstream proteins, while SOC channels did not participate in the vasoconstriction.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Animais , Vasos Coronários , Camundongos , Músculo Liso Vascular , Vasoconstrição , Vasoconstritores
20.
Clin Exp Pharmacol Physiol ; 48(5): 726-734, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33565136

RESUMO

BTP2 is a potent inhibitor of store-operated Ca2+ entry (SOCE), which plays a vital role in vasoconstriction. However, the direct effect of BTP2 on the contractile response remains unclear. Here, we investigated the effects and mechanisms of action of BTP2 in the mouse aorta. Isometric tension was measured using a Multi Myograph System with two stainless steel wires. Ca2+ transient was recorded by confocal laser scanning microscope. The results showed that BTP2 markedly suppressed vasoconstriction mediated by SOCE and Ca2+ influx mediated by SOCE. The cumulative concentration of BTP2 had no effect on the baseline of mouse aortic rings, whereas it increased vasoconstriction stimulated by 3 µmol/L Phenylephrine. BTP2 (1 µmol/L) significantly increased vasoconstriction induced by 3 µmol/L Phe or cumulative concentration. BTP2 also promoted noradrenaline-induced aortic contraction. However, Phe- and noradrenaline-induced contraction was not affected by 0.3 or 3 µmol/L BTP2, and BTP2 at 10 µmol/L significantly suppressed aortic contraction. BTP2 inhibited 5-HT-evoked contraction in a concentration-dependent manner. BTP2 at higher concentrations (>3 µmol/L) inhibited CaCl2 -induced and 60 mmol/L K+ -induced contraction with progressive reduction of maximal contraction in a concentration-dependent manner. These results suggest that 1 µmol/L BTP2 increases contraction evoked by α1 adrenoreceptor activation. BTP2 at higher concentrations may inhibit Cav1.2 channels.


Assuntos
Aorta , Vasoconstrição , Animais , Canais de Cálcio , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA